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Anisotropic Cartesian grid method for steady inviscid shocked
�ow computation
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SUMMARY

The anisotropic Cartesian grid method, initially developed by Z.N. Wu (ICNMFD 15, 1996; CFD
Review 1998, pp. 93–113) several years ago for e�ciently capturing the anisotropic nature of a viscous
boundary layer, is applied here to steady shocked �ow computation. A �nite-di�erence method is
proposed for treating the slip wall conditions. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There are three-well known methods for treating complex geometries: unstructured grid meth-
ods, structured multidomain methods, and adaptive Cartesian grid methods. Unstructured grid
methods are very �exible in handling complex geometries. Structured multidomain methods
are supposed to be as accurate as traditional structured grid method, and �exible for treating
complex geometries, though they face a large theoretical problems such as stability, conver-
gence, uniqueness, and conservation, see Reference [1] for an overview.
Cartesian grid method has been demonstrated to be a useful tool for computing �ows

with complex geometries. The Cartesian grid method has been successfully used to perform
external �ow computation with arbitrarily shaped solid walls, see for instance References
[2–10] for inviscid �ow computation and [11–13] for viscous �ow computations. More re-
cently, the Cartesian grid method has been used to compute three dimensional �ows around
complex geometries [14–17]. A Cartesian grid involves simple cells in interior regions and
cutcells near solid walls. This method requires a mesh re�nement strategy [2, 5, 10, 18, 19] to
resolve the geometry and/or the �ow and a special treatment of the solid boundary conditions
[2, 4, 9, 10, 20].
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1054 Z.-N. WU AND KE LI

Traditional grid generation starts with a background Cartesian grid with squared cells. The
�nal grid is generated by the recursive subdivision of a single cell (parent) into four squared
cells (children) when it is necessary. The hierarchical relation between the children and par-
ents is stored and used for cell neighbour searching. The resulting grid thus involves cells
of various sizes. Since a cell is re�ned equally in both directions independently of the ge-
ometry and the �ow gradient, the resulting Cartesian grid is isotropic. As pointed out by
Powell in his review paper [22], the isotropic Cartesian grid approach unavoidably leads
to impractical number of cells when the �ow is of anisotropic nature. Most Cartesian grid
method uses a �nite-volume approach to de�ne solid boundary condition by solving a con-
servative di�erence equation on each polygone resulting from cell cutting. Cell cutting is
expensive in general. The �nite-volume approach may lead to instability for small cutcells.
One either merges small cutcells to form large ones [6, 10] or modi�es the scheme near the
wall [19] to maintain the stability. This unavoidably reduces the accuracy or complicates
the interior scheme. The advantage of the �nite-volume approach is that it ensures conserva-
tion near the wall. A conceptually rather di�erent method was presented in Reference [21]
where a hybrid Cartesian/curvilinear grid is applied. The grid is Cartesian in interior regions
and is structured cuvilinear near the solid wall. This ensures a good precision both at in-
terior regions and near the wall. Di�erence equations on the two grids can be matched in
a stable way. Such a method is further developed in Reference [20] where the Cartesian
grid in interior region is matched to a body-�tted-structured grid through a thin unstructured
grid.
In order to make the Cartesian grid method more e�cient, Wu [13, 23] proposed an

anisotropic Cartesian grid method and a �nite-di�erence solid wall treatment for viscous
�ow computation. A similar but slightly di�erent method is proposed in Reference [12]
for solid wall condition. The anisotropic method is expected to reduce the number of cells
without lossing the accuracy in comparison with the isotropic method. Note that anisotropic
mesh methods have been well developed for unstructured grid method, see for instance
Reference [24], where general principles have been given for user-independent, mesh-
independent, and solver-independent CFD purpose.
In this paper we extend the anisotropic Cartesian grid method and the �nite di�erence wall

treatment to inviscid �ow computation, notably with shock waves.
The anisotropic method divides a cell into subcells independently in each direction. In

References [13, 23], only geometry-oriented re�nement is considered. Near the wall with
small curvature, the cells are essentially re�ned in the normal direction. When there is a
great curvature, the cells are re�ned in both directions. The anisotropic method proposed in
References [13, 23] not only provides an e�cient resolution of the geometry but also �ts to
the anisotropic nature of the viscous boundary layer near the body where the �ow gradient is
essentially in the direction normal to the wall. In Figures 1 and 2, we display an anisotropic
Cartesian grid and an isotropic Cartesian grid. The anisotropic grid is obviously grid saving,
while resolving the boundary layer. The problem considered in this paper involves shock
waves. The anisotropic nature of shock waves is more pronounced than in viscous �ow com-
putations. Near an essentially vertical or horizontal shock, the use of an anisotropic grid will
substantially reduce the number of grid points since a shock only needs to be re�ned in the
normal direction.
The �nite-di�erence solid wall condition is based on the slip condition on the wall and the

known solution at several interior points. These solutions are then interpolated to the centre
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Figure 1. Isotropic Cartesian grid near a part of NACA0012 airfoil.

Figure 2. Anisotropic Cartesian grid near a part of NACA0012 airfoil.

of the boundary cell. The �nite-di�erence approach does not require the boundary cells to be
really cut.
This paper will be presented as follows. In Section 2, the geometry-oriented anisotropic

Cartesian grid method developed in References [13, 23] is extended here to shocked �ow
problems.
Section 3 is devoted to boundary treatment near solid walls. We use bilinear interpolation

to construct an easily implementable second-order accurate solid wall condition.
The anisotropic method along with the solid wall condition is �nally validated by computing

shocked �ows in Section 4. The standard Roe scheme will be used.
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Concluding remarks will be given in the end of this paper, where some discussions on
stability and accuracy will be given.

2. ANISOTROPIC GRID GENERATION NEAR SHOCK WAVES

A key feature of the Cartesian grid is that it starts from a base grid and then a re�nement
algorithm is used to generate the �nal grid. The present paper is only concerned with steady
�ows. The re�nement algorithm works for steady �ows. But this algorithm could be straight-
forwardly extended to unsteady �ows in the following way: at each time step, use the grid
of the previous time step as a base grid, and repeat the subsequent steps as involved in the
steady state approach.

2.1. Basic steps

A subgrid of level l with l=0; 1; : : : ; L refers to all the cells having the same mesh size hl.
The mesh size satis�es the relation hl= rlh0 where r= 1

2 is the the re�nement ratio and h0 is
the mesh size on the coarse grid.
Algorithms for isotropic Cartesian grid generation can be found in References [6, 10]. The

algorithm for anisotropic Cartesian grid generation was proposed by Wu [13, 23] with the
primary concern of geometry-oriented re�nement. Here we extend the anisotropic algorithm
to inviscid �ows with shock waves.
For convenience, cells are divided into three classes: �uid cells, boundary cells, and solid

cells. Fluid cells are cells which are completely inside the �ow �eld. Boundary cells are cells
having an intersection with the boundary. Solid cells are cells which completely lie inside the
solid.
The present grid generation/solution algorithm is divided into 6 steps:

(1) construction of the base grid, using the geometry-oriented anisotropic approach as
developed in References [13, 23] and which is composed of �ve steps: (a) construc-
tion of the based grid (level l=0), (b) determination of the re�nement criterion, (c)
re�nement of each cell when necessary, (d) location of boundary cells (cutcells), (e)
suppress of solid cells.

(2) compute the numerical solution using the Roe scheme as described in Section 4.
(3) determine the shock lines.
(4) re�ne the grids near the shock lines.
(5) recompute the �ow using the re�ned grids.
(6) if obvious di�erence of solution is observed, go to step 3. Otherwise stop.

2.2. Re�nement requirement near shock lines

The derivative of the solution along the normal of a shock wave is in�nite. Hence it is
impossible to construct a gradient-based re�nement criterion. Otherwise the mesh size would
be in�nitely small. Since the re�nement is dominated by the resolution of shock waves, we
can simply �x the maximum re�nement levels in the normal direction of the shock wave.
In the following, we will consider the re�nement near shock waves, curved solid walls,

and contact discontinuities in a uniform way.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1053–1084



ANISOTROPIC CARTESIAN GRID METHOD 1057

Figure 3. Re�ned lines: curved wall surfaces, shock lines, and contact discontinuity lines.

In the isotropic algorithm, the re�nement criterion is independent of the direction. In the
anisotropic one, the re�nement depends on the direction so that the re�nement criterion,
expressed as the re�nement ratio, should be a vector. Let R(x)= (R(x)(x); R(y)(x)) be the
local re�nement ratio at x, then the mesh sizes at x are de�ned by

h(x) =
1
lx
h(x)0 ; h(y) =

1
ly
h(y)0

where

lx=
⌈
1
R(x)

⌉
; ly=

⌈
1
R(y)

⌉

where �•� denotes the integer part of its argument.
The re�nement of cells is determined by ‘re�ned lines’. The re�ned lines include curved

wall surfaces, shock lines, and contact discontinuity lines (Figure 3). Assume that there are
I re�ned lines Ci, i=1; 2; : : : ; I . Consider the line Ci which satis�es the equation

Ci(x; y; t)=0

At each point xci on Ci is de�ned a re�nement criterion R(xci)= (R(x)(xci); R(y)(xci)). Here
R(x) is the re�nement ratio in x and R(y) is the re�nement ratio in y.
If Ci is a solid wall, then R(xci) can be related to the local curvature c(xci). See

Reference [23] for details of the computation of the local curvature. Let lmin, lmax and liso
be given three integers. The integer lmin is the minimal number of re�nements on the wall
and lmax is the maximal number of re�nements on the wall. The integer liso is the number of
anisotropic re�nements counting from the �nest subgrid. Let cmin and cmax be the minimum
and maximum local curvatures on the wall. At any point xci on the wall, de�ne the local
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relative curvature �c(xci) by

�c(xci)=
c(xci)− cmin
cmax − cmin (1)

Then the number of re�nements in the directions normal and tangent to the wall are com-
puted as:

ln = (1− �c)lmin + �clmax; lt = ln − liso:
which means that the cell is ‘re�ned’ ln times in the direction normal to the wall and ‘re�ned’
lt times in the direction tangent to the wall.
If Ci is a shock wave or a slip line, then R(xci) can be related to the local gradient.

However, the local gradient on a shock line or slip line is in�nite. Let ln and liso be given
two integers. This means the cell is ‘re�ned’ ln times in the direction normal to the re�ned
line and ‘re�ned’ lt = ln − liso times in the direction tangent to the re�ned line. The integer
liso is the number of anisotropic re�nements counting from the �nest subgrid. In practice, we
have to specify ln according to the resolution requirement of shock waves.
Finally, lx and ly are computed by

lx=
√
(lnnx)2 + (ltny)2; ly=

√
(lnny)2 + (ltnx)2

where (nx; ny) is the local unit normal on the wall. Finally, R(xci) is computed as

R(xci)=
(
1
lx
;
1
ly

)
(2)

2.3. Re�nement criterion in interior points

The grid re�nement in interior regions originates from the re�nement near the re�ned lines.
The re�nement criterion should be determined by requiring the cells to vary gradually from the
re�ned lines to the other points. The simplest choice is to ensure approximatively a constant
subgrid width in terms of grid points in the direction n(xci).
Let dj= |xj − xci | and let d∞= |x∞ − xci | where x∞ is the point on the far �ow �eld

boundary closest to xci . If the local re�nement ratio at xj is a linear function of the distance
dj, i.e.

R(xj)= �+ (1− �)R(xw); �=
dj
d∞

(3)

then the subgrid width in the direction n(xci) is approximately constant.
When there are several re�ned lines, the re�nement ratio at an interior point xi computed

from one re�ned line may di�er from that from another re�ned line. Assume there are I
separated re�ned lines on which the re�nement ratios are R(ci)(xci)= (R

(ci)
x ; R

(ci)
y ). Then R(xj)

is computed as

R(xj)= (R(x); R(y))

{
R(x) =min16i6I [R(ci)x ]

R(y) =min16i6I [R(ci)y ]
(4)
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Figure 4. Anisotropic re�nement near a re�nement line. (a) grid after 2 isotropic re�ne-
ments. (b) isotropic re�nement for cell 1 and anisotropic re�nement for cells 2 and 3. (c)
grid after 2 isotropic re�nements and 1 anisotropic re�nement. (d) grid after 2 isotropic

re�nements and 2 anisotropic re�nements.

2.4. Anisotropic re�nement

Let L be the level of the �nest grid (normally near shock waves). Then from min(Rx; Ry)= rL

we obtain L= lnmin(Rx; Ry)= ln r. Here r= 1
2 . The re�nement starts from grid level l=0. At

each grid level l, we compute R(xj) for each cell where xc is the cell centre.
Compute

lx=
⌈
ln Rx(xj)
ln r

⌉
; ly=

⌈
ln Ry(xj)
ln r

⌉
(5)

where [·] denotes the integer part of a real number.
If l¡lx and l¡ly, then the current cell is divided into four squared cells. For example, this

occurs for cell 1 in Figure 4(a), 4(b).
If l¿lx and l¡ly, then the current cell is divided into two rectangle cells in the vertical

direction. For example, this occurs for cell 2 in Figure 4(a), 4(b).
If l¡lx and l¿ly, then the current cell is divided into two rectangle cells in the horizontal

direction. For example, this occurs for cell 3 in Figure 4(a), 4(b).
If l¿lx and l¿ly, then the current cell will not be divided.
Let us consider the re�nement for the geometry in Figure 4. At level l= liso, the grid is

still isotropic (Figure 4(a)). After two steps of anisotropic re�nement, the anisotropic grids
are respectively given by Figure 4(c) and Figure 4(d).
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Figure 5. De�nition of ampli�ed cells.

Figure 6. Generation and transformation of cutcells.

2.5. Search of boundary cells (cutcells) and solid cells

This has been described in detail in Reference [23]. Here we repeat it for completeness.
Boundary cells. The boundary condition that will be studied uses a �nite-di�erence approach

so that we do not need to �nd the intersection between the wall and the cutcells. In order
the search to be quite e�cient, a cell (rectangle or square) will be considered to be a cutcell
once the nearest point on the wall lies inside the (1+�)-ampli�ed cell. The (1+�)-ampli�ed
cell has the same shape and the same centre as the original cell except that its width and
length are ampli�ed by (1 + �). Consider the cells displayed in Figure 5. The original cells
have no intersection with the wall BB′ but the (1 + �)-ampli�ed cells have an intersection
with the wall. The parameter � is a small positive number. For example, we can take �=0:1.
Such a search leads to cutcells of two types: genuine cutcells and pseudo cutcells. A genuine
cutcell has intersection with the wall while a pseudo cutcell is disjoint from the wall and
its ampli�ed cell intersects the wall. The cutcells can be further classi�ed into f-cutcells and
s-cutcells. The f-cutcells have �uid cells as neighbours but have no solid neighbours. The
s-cutcells have solid cells as neighbours. See Figure 6(a).

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1053–1084
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Figure 7. Search of solid cells.

After all the cutcells and solid cells are searched (see next section), only the s-cutcells are
kept and the f-cutcells are transformed into �uid cells. See Figure 6(b).
Such a method, which broadens the search and keeps the s-cutcells, is extremely e�cient.

This treats without ambiguity the case of cell 1 and cell 2 displayed in Figure 6(a). The
wall lies at the interface of cells 1 and 2. A di�erent algorithm would face the di�culty of
deciding which of cells 1 and 2 intersects with the wall.
The case of cell 3 in Figure 6 is also important. Cell 3 is a genuine cutcell but it is �nally

transformed into a �uid cell. Since cell 3 is essentially inside the �uid, it is better to treat it
as a �uid cell instead of de�ning a boundary condition on it.

Search of solid cells. Once all the cutcells are searched, the search of solid cells is relatively
simple. Consider for instance the body display in Figure 7. In order to suppress all the solid
cells inside the oven, a reference point P is given. The closest cell, denoted as cell P, is
searched and then suppressed, see Figure 7-1. Once cell P is suppressed, its four neighbours
are suppressed, see Figure 7-2. The neighbours of all the suppressed cells are suppressed
unless they are cutcells, see Figure 7-3,4,5. This process is repeated until all the solid cells
are suppressed, see Figure 7-6.

2.6. Advantage of the anisotropic method

Consider a shock line de�ned by

y= x tan(�); 06x6 cos � (6)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1053–1084
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Figure 8. Isotropic and anisotropic re�nements near a shock line. (a) initial grid,
(b) anisotropic (c) isotropic.

where 06�6�. The grid is re�ned in the normal direction of the line starting from an
isotropic initial grid as displayed in Figure 8(a). The anisotropic grid and isotropic grid after
two levels of re�nement are displayed in Figure 8(b) and 8(c) for two typical angles �. It
is clear that the anisotropic grid has much fewer points than the isotropic one especially for
�≈ 0 and �≈�=2.
As proved in Reference [23], the statistical ratio between the number of grid points by

anisotropic re�nement and by isotropic re�nement is

�r≈ 0:27 + 0:67
L

Hence for L large enough, the anisotropic method is grid saving.

3. SOLID WALL TREATMENT

3.1. Various approaches

A Cartesian cell is a rectangle. A Cartesian cell having an intersection with the body surface
is called an on-body Cartesian cell. An on-body Cartesian cell is divided by the body surface
into two parts. One part lies inside the �uid and is called a cutcell. The other part lies in
the solid. Boundary conditions are either de�ned at the centre of cutcells, or at the centre of
on-body Cartesian cells. On-body Cartesian cells are also called uncut version of cutcells.
Cutcells are used to de�ne boundary conditions in the framework of �nite-volume approach.

As pointed out by Powell [22], there are two major di�culties raised by cutcells: the accuracy
and the stability. Cutcells have irregular shapes: they are polygones for two dimensional
problems. In this case the geometric centre of the polygone is not at the centre of the uncutted
cell so that it is not so easy to de�ne an accurate boundary condition. Some cutcells can be
very small, so that the maximum stable time step is reduced. In Figure 9 we show a typical
cutcell (cell C). For convenience, we divide the cutcells into two classes: inner cutcell and
outer cutcell. Inner cutcell is larger than the half of an uncut cell, and outer cutcell is smaller
than the half of an uncut cell. For a �nite-volume approach, we then compute the numerical
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Figure 9. Cutcell de�nition for �nite volume approach. Left: inner cutcell (more than half a part is
inside the �uid). Right: outer cutcell (more than half a part is outside the �uid).

Figure 10. The small cutcell C of Figure 9 is merged with the right cell (Left) or upper
cell (Right) to form a large merged cell.

�uxes across each side of the cutcell to update the solution at the centre of the cutcell. In order
to avoid instability for small cutcells, two types of boundary treatments were proposed. One
is to use a wave propagation approach in which the quantity is redistributed [2, 25]. Another
is to use cell merging [6, 10], in which a small cutcell which is less than some user-de�ned
fraction (say 1

2) of the area of its uncut version is merged with a neighboring uncut cell to
have a larger merged cell. Consider for instance the small cutcell C in the right of Figure 9.
The cutcell C is merged with its right neighbour (which is an uncut cell) or with its upper
neighbour (which is also a cutcell) to form a large merged cell (Figure 10). The numerical
�uxes across each side of the merged cell are computed to update the solution at the centre
of the cutcell.
In the �nite di�erence approach, the boundary condition is directly de�ned at the cell

centre of each on-body Cartesian grid. For the on-body Cartesian cell shown in Figure 11,
the boundary condition is de�ned at its centre C. On-body Cartesian cells or boundary cells can
be divided into two classes: inner boundary cell and outer boundary cell. An inner boundary
cell has its cell centre inside the �ow �eld. An outer boundary cell has its cell centre inside
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1064 Z.-N. WU AND KE LI

Figure 11. Boundary cell for �nite di�erence treatment. Left: inner boundary cell (the cell centre C is
inside the �uid). Right: outer boundary cell (the cutcell centre C is outside the �uid). W is on the wall

such that CW is perpendicular to the wall.

Figure 12. Cutcell de�nition for mixed �nite-volume �nite-di�erence approach. Cutcell Ca is a
inner cutcell to be treated using the �nite volume approach. Cutcell Cb is a outer cutcell to be

treated using the �nite di�erence approach.

the solid. The present boundary condition will be invariant whether the boundary cell is inner
or outer.
It is also possible to build a mixed �nite-volume �nite-di�erence approach. If the cutcell

is larger than a half of the uncut version, then one can use the �nite-volume approach. If
the cutcell is smaller than the half of the uncut version, then one can use the �nite-di�erence
approach. Figure 12 shows two boundary cells. The cutcell Ca is larger than a half of its
uncut version and is treated using the �nite-volume approach. The boundary cell Cb is treated
by the �nite di�erence approach.
In this paper we only consider the �nite-di�erence approach.

3.2. The boundary conditions

The boundary condition is de�ned at the centre of each boundary cell, no matter this centre
lies inside the �uid or the solid. The boundary conditions will be de�ned for the velocity
components u and v, pressure p, and density � at the centre of the boundary cell.
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The boundary condition is constructed by using the following bilinear interpolation easily
extendible to three dimensions:

L(�; x; y)=d(�)0 + d(�)1 x + d(�)2 y + d(�)3 xy (7)

where � refers to the two velocity components u and v, the density � and the pressure p.
The condition at the centre (xc; yc) of each boundary cell is then computed as

�c =L(�; xc; yc) (8)

The interpolation coe�cients d(�)i with i=1; 2; 3; 4 are determined using known solutions
at three adjacent �uid cells �1, �2, �3. This yields the following three relations:

d(�)0 + d(�)1 x1 + d
(�)
2 y1 + d

(�)
3 x1y1 =�1 (9)

d(�)0 + d(�)1 x2 + d
(�)
2 y2 + d

(�)
3 x2y2 =�2 (10)

d(�)0 + d(�)1 x3 + d
(�)
2 y3 + d

(�)
3 x3y3 =�3 (11)

Since we have four interpolation coe�cients, we need a fourth relation. The fourth relation
can be of a Dirichlet boundary condition (such as the isothermal condition on the wall) or a
Neumann condition (such as the adiabatic condition for temperature).
Let xw be the co-ordinate of the point on the wall that is nearest to the boundary cell

centre xc.
A Dirichlet condition generally has the following form

�w = g (12)

where �w =�(xw)=L(�; xw; yw) so that, by (7), we have the fourth relation for the interpo-
lation coe�cients

d(�)0 + d(�)1 xw + d
(�)
2 yw + d

(�)
3 xwyw = g (13)

Let nw be the unit normal at xw. A Neumann condition can be generally written as:

@�
@nw

= g (14)

Remark that

@�
@nw

∣∣∣∣
w
=

(
@�
@x
;
@�
@y

)
w

· (n(x)w ; n(y)w ) (15)

@�
@x

∣∣∣∣
w
= d(�)1 + ywd

(�)
3 (16)

@�
@y

∣∣∣∣
w
= d(�)2 + xwd

(�)
3 (17)
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Combining the above relations with (14) leads to the following additional relation for the
interpolation coe�cients:

n(x)w d
(�)
1 + n(y)w d

(�)
2 + (n(x)w yw + n

(y)
w xw)d

(�)
3 = g (18)

Now consider the boundary condition for �.
If the boundary condition on the wall is of Dirichlet type as given by (12), then relations

(9)–(11) and (13) should be solved to determine the coe�cients d(�)i and then use (7)–(8)
to determine the boundary condition �c at the boundary cell centre.
If the boundary condition on the wall is of Neumann type as given by (14), then the

relations (9)–(11) and (18) should be solved to determine the coe�cients di and then use
(7)–(8) to determine the boundary condition �c at the boundary cell centre.
First recall how the nonslip condition as for a viscous �uid was used in the past. We

have u= v=0 on the wall. Thus for the velocity components we use the Dirichlet condition
with g=0. For the pressure, if the Reynolds number is high enough, we use the Neumann
condition with g=0. For the density, it depends on whether the wall is adiabatic or has a
�xed temperature. If the wall is adiabatic, we still have a Neumann condition with g=0.
If the wall has a �xed temperature Tw, then we �rst need to compute the pressure on the
wall by (7):

pw =d
(p)
0 + d(p)1 xw + d

(p)
2 yw + d

(p)
3 xwyw (19)

where di are determined by using (9)–(11) and (18) for �=p. Then the density on the wall
is computed as �w=pw=(RgTw) where Rg is the gas constant. Then the density at the boundary
cell centre is computed by using the Dirichlet condition with g=�w.
Now consider the slip wall condition as used for the Euler equations in gas dynamics.

The total enthalpy Hc and the entropy Sc at the boundary cell centres are computed using
the Neumann condition with g=0. Precisely, the normal derivatives of the total enthalpy
and entropy are assumed to vanish on the wall. For steady �ow problem the total entropy is
indeed uniform so that it is reasonable to assume that the normal derivative of Hc on the wall
vanishes. The normal derivative of entropy on the wall vanishes in most cases, except near
the point of intersection of an oblique shock wave and the wall. Such boundary conditions
are frequently used, see for instance Hirsh [26].
The normal velocity component Un; c at the boundary cell centre is computed using the

Dirichlet condition with g=0. Now consider the pressure.
The momentum equation projected to the direction normal to the wall can be written as

�
@Unw
@t

+ �Unw
@Unw
@nw

+ �U�w
@Unw
@�w

=− @p
@nw

where nw is the direction normal to the wall, and �w is the direction tangent to the wall. Since
Unw =0 on the wall, the above equation yields the following condition on the wall

@p
@nw

=−�U�w
@Unw
@�w

(20)

Hence the pressure at the boundary cell centre can be computed by using the Neumann
condition with g=−�U�w@Unw =@�w. To compute this g, we must know �, U�w , and @Unw =@�w
on the wall. The density � and the tagent velocity component U�w are computed using the
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Neumann condition with g=0. Consider for instance the tagent velocity component U�w on
the wall. We use (9)–(11) and (18) for g=0 to compute the interpolation coe�cients. Then
we compute U�w as

U�w =U�w ;w =L(U�w ; xw; yw) (21)

The density on the wall is computed similarly. Now consider the gradient @Unw =@�w on the
wall. Set �=Unw and use (9)–(11) and (13) with g=0 to determine the interpolation coef-
�cients. Then we use (16)–(17) to compute @Unw =@x and @Unw =@y. The gradient @Unw =@�w on
the wall is then computed as

@Unw
@�w

=
@Unw
@x

�(x)w +
@Unw
@y

�(y)w (22)

Now we know Unw ; c, pc, Hc, and Sc at the boundary cell centre. For convenience, we need
to know the density �c, the Cartesian velocity components uc and vc. The density can be
computed as

�c =
(
pc
Sc

)1=�

The square of the total velocity at the boundary cell centre is given by

U 2
c = 2

(
Hc − �

�− 1
pc
�c

)

so that the tangent component is

U�w ; c = sign(U�w ;w)
√
U 2
c −U 2

nw ; c = sign(U�;w)

√
2
(
Hc − �

�− 1
pc
�c

)
−U 2

nw ; c

where U�w ;w is given by (21). Finally, uc and vc are given below:

uc =
n(y)w U�w ;c − �(y)w Unw ;c
�(x)w n

(y)
w − n(x)w �(y)w

; vc =
�(x)w Unw ;c − n(x)w U�w ;c
�(x)w n

(y)
w − n(x)w �(y)w

since Unw ; c = ucn
(x)
w + vcn

(y)
w and U�w ; c = uc�

(x)
w + vc�

(y)
w .

4. NUMERICAL EXPERIMENTS

4.1. Di�erence approximation

Consider the Euler equations in gas dynamics:

wt + fx + gy=0 (23)
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Figure 13. A normal cell for de�ning a conservative scheme. The time variation of the solution
at the cell centre j is contributed by the numerical �uxes across the left face (lft), right face

(rgt), lower face (lwr), and upper face (upr).

where

w=



�
�u
�v
�E


; f=




�u

�u2 + p
�uv
�uH


; g=




�v
�vu

�v2 + p
�vH




Here � denotes the ratio of speci�c heats, �, p, E and H are respectively the density, the
pressure, the total energy and the total enthalpy, U= ui + vj is the velocity vector with the
components u and v. With the assumption of a perfect gas, the following relations hold:

H =E +
p
�
; p=(�− 1)�

(
E − 1

2
U2

)

We use the Roe scheme [27] to solve the Euler equations in gas dynamics. First let us
consider a normal cell without interface as displayed in Figure 13 and write the conservative
scheme in the following form:

�wj=−�j(h∗rgt − h∗lft + h∗upr − h∗lwr) (24)

Here �j=�tj=Sj, �tj being the time-step and Sj the area of the cell. Let �xj and �yj be the
cell size in x and y, then the numerical �uxes h∗rgt and h

∗
upr are given by:

h∗rgt
�yj

=
1
2
(fnj + f

n
right) +

1
2
|A(R)rgt |(wnj − wnright) (25)

h∗upr
�xj

=
1
2
(fnj + f

n
upper) +

1
2
|B(R)upr |(wnj − wnupper) (26)
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and the �uxes h∗lft , h
∗
lwr are similarly de�ned. Here f

n
j =f(w

n
j ), f

n
right =f(w

n
right), and f

n
upper

=f(wnupper), w
n
right is the solution at the right neighbour of j, and w

n
upper is the solution at the

upper neighbour of j. The matrices A(R)rgt =A(R)(wnj ; w
n
right) and B

(R)
upr =B(R)(wnj ; w

n
upper) are Roe

matrix at the right face and the upper face, respectively. The symbols |A(R)| and |B(R)| denote
the absolute values of A(R) and B(R). The explicit formulas for A(R) and B(R) are given by

A(R) =




0 1 0 0

−u2R + �−1
2 U

2
R (3− �)uR (1− �)vR �− 1

−uRvR vR uR 0

−uR((�− 1)HR + 3−2�
2 U

2
R ) (�− 1)(HR − u2R) + 2−�

2 U
2
R (1− �)uRvR �uR




B(R) =




0 0 1 0

−vRuR vR uR 0

−u2R + �−1
2 U

2
R (1− �)vR (3− �)uR �− 1

−vR((�− 1)HR + 3−2�
2 U

2
R ) (1− �)vRuR (�− 1)(HR − v2R) + 2−�

2 U
2
R �vR




where U 2
R = u

2
R + v

2
R, and uR, vR and HR are Roe averages de�ned by

uR =
√�juj +√

�nbrunbr√�j +√
�nbr

vR =
√�jvj +√

�nbrvnbr√�j +√
�nbr

HR =
√�jHj +√

�nbrHnbr√�j +√
�nbr

Here the subscript nbr means the neighbour of j, such as the right neighbour and the upper
neighbour.
Now consider a cell j with a coarse right neighbour jR as displayed in Figure 14. To

compute the numerical �ux at the right face of j, we use a �ctive right neighbour jr , which
is de�ned as if there were no interface. Precisely, the right state wnright used to compute
h∗rgt = h

∗
rgt(w

n
j ; w

n
right) for cell j is de�ned as

wnright =wjr

where wjr is computed through interpolation from the states around j and jR.
When there is an interface such as the left face of cell j displayed in Figure 15, we

follow Reference [18] to compute the numerical �ux by h(∗)lft = h
(∗)
ab + h

(∗)
bc where h(∗)ab and h(∗)bc

are numerical �uxes at the right face of the �ner cells i and m. Such a treatment ensures
conservation.
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Figure 14. A Cartesian cell j with a coarse right neighbour jR.

Figure 15. A cell with left interface for de�ning a conservative scheme. The left face for cell j has
two neighbours (cell i and cell m). The left face ac is divided into two segments ab and bc.

4.2. Numerical results

In all the computations we have used local time stepping (matrix time step) to accelerate the
convergence to a steady state.

4.2.1. Symmetric �ow around a NACA0012 airfoil. Consider a symmetric �ow a NACA0012
airfoil. The free stream Mach number is M∞=0:8. The open boundary extends to a distance
of 10 times the chord length. The corresponding Cartesian grids obtained by the isotropic
algorithm and the anisotropic algorithm are displayed in Figures 16 and 17. Both grids have
12 levels. The isotropic re�nement algorithm leads to 14128 cells while the anisotropic algo-
rithm reduces the total number of cells to 6625. In comparison with the isotropic algorithm,
the anisotropic algorithm has saved 53% cells. It remains to see whether the two grids lead
to the same solution.
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Figure 16. Isotropic grids (inner part) for NACA 0012 airfoil (M∞=0:8).

The computed Mach contours for both grids are displayed in Figures 18 and 19. The
di�erence between the solutions on both grids is not visible.
In Figure 20 we display the distribution of pressure coe�cient on the chord. The result

obtained from anisotropic Cartesian grid is not distinguishable from that obtained by isotropic
Cartesian grid.
As a result, the anisotropic Cartesian grid method saves considerably the number of cells

while maintaining the same accuracy as the corresponding isotropic Cartesian grid method.

4.2.2. Transonic �ow around a NACA0012 airfoil with incidence. Consider a �ow around
a NACA0012 airfoil. The free stream Mach number is M∞=0:85. The incidence of the
�ow is �=1◦. The corresponding Cartesian grids obtained by the isotropic algorithm and the
anisotropic algorithm are displayed in Figures 21 and 22, respectively. Both grids have 12
levels. The isotropic re�nement algorithm leads to 17398 cells while the anisotropic algorithm
reduces the total number of cells to 6643. In comparison with the isotropic algorithm, the
anisotropic algorithm has saved 62% of the cells. It remains to see whether the two grids
lead to the same solution.
The computed Mach contours for both grids are displayed in Figures 23 and 24. The

di�erence between the solutions on both grids is not visible.
In Figure 25 we display the distribution of pressure coe�cient on the chord. The curve

obtained from anisotropic Cartesian grid is not distinguishable from that obtained by isotropic
Cartesian grid.
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Figure 17. Anisotropic grids (inner part) for NACA 0012 airfoil (M∞=0:8).

Figure 18. Mach contours for NACA 0012 airfoil with isotropic grids (M∞=0:8).
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Figure 19. Mach contours for NACA 0012 airfoil with anisotropic grids (M∞=0:8).

Figure 20. Pressure distribution around NACA 0012 (M∞=0:8).
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Figure 21. Isotropic grids (M∞=0:85. The incidence of the �ow is equal to 1◦).

Figure 22. Anisotropic grids (M∞=0:85. The incidence of the �ow is equal to 1◦).

4.2.3. Supersonic �ow around a NACA0012 airfoil. Consider a supersonic �ow around a
NACA0012 airfoil. The free stream Mach number is M∞=1:2. The incidence of the �ow
is �=7◦. The corresponding Cartesian grids obtained by the isotropic algorithm and the
anisotropic algorithm are displayed in Figures 26 and 27. Both grids have 12 levels. The
isotropic re�nement algorithm leads to 15631 cells while the anisotropic algorithm reduces
the total number of cells to 9325. In comparison with the isotropic algorithm, the anisotropic
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Figure 23. Mach contours with isotropic grids (M∞=0:85. The incidence of the �ow is equal to 1◦).

Figure 24. Mach contours with anisotropic grids (M∞=0:85. The incidence of the �ow is equal to 1◦).
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Figure 25. Pressure distribution (M∞=0:85. The incidence of the �ow is equal to 1◦).

Figure 26. Isotropic grids (M∞=1:2. The incidence of the �ow is equal to 7◦).
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Figure 27. Anisotropic grids (M∞=1:2. The incidence of the �ow is equal to 7◦).

Figure 28. Mach contours with isotropic grids (M∞=1:2. The incidence of the �ow is equal to 7◦).

algorithm has saved 41% of the cells. It remains to see whether the two grids lead to the
same solution.
The computed Mach contours for both grids are displayed in Figures 28 and 29. The

di�erence between the solutions on both grids is not visible.
In Figure 30 we display the distribution of pressure coe�cient on the chord. The curve

obtained from anisotropic Cartesian grid is not distinguishable from that obtained by isotropic
Cartesian grid.
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Figure 29. Mach contours with anisotropic grids (M∞=1:2. The incidence of the �ow is equal to 7◦).

Figure 30. Pressure coe�cient distribution (M∞=1:2. The incidence of the �ow is equal to 7◦).
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Figure 31. Isotropic grid (inner part) for Bi-NACA airfoil.

Figure 32. Anisotropic grid (inner part) for Bi-NACA airfoil.

4.2.4. Flow around a Bi-NACA airfoil. Consider a �ow around a Bi-NACA airfoil. The
Bi-NACA airfoil is formed by two parallel NACA0012 airfoils. They are shifted by a distance
equal to half a chord in both the parallel and perpendicular directions. The free stream Mach
number is M∞=0:7. The �ow has no incidence. The open boundary extends to a distance
of 10 times the chord length. The corresponding Cartesian grids obtained by the isotropic
algorithm and the anisotropic algorithm are displayed in Figures 31 and 32. The isotropic and
anisotropic grids have16472 and 9362 cells, respectively.
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Figure 33. Mach contours for BI-NACA airfoil with isotropic grids (M∞=0:7).

Figure 34. Mach contours for BI-NACA airfoil with anisotropic grids (M∞=0:7).

The computed Mach contours for both grids are displayed in Figures 33 and 34. We observe
no di�erence between the solutions on the two grids. The agreement between the two solutions
is more convincingly shown in Figure 35 where the distributions of pressure coe�cients are
displayed.
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Figure 35. Pressure distribution for BI-NACA airfoil (M∞=0:7).

Figure 36. Isotropic grids.

In consequence, the anisotropic Cartesian grid method saves considerably the number of
cells while maintaining the same accuracy as the corresponding isotropic Cartesian grid method
even for a multi-element body.

4.2.5. Forward step �ow. Consider the forward step problem with M∞=2.
The corresponding Cartesian grids obtained by the isotropic algorithm and the anisotropic
algorithm are displayed in Figures 36 and 37. Both grids have 8 levels. The computed Mach
contours for both grids are displayed in Figures 38 and 39. The solutions for both grids are
very close. The isotropic re�nement algorithm leads to 6916 cells while the anisotropic algo-
rithm reduces the total number of cells to 5974. In comparison with the isotropic algorithm,

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1053–1084



1082 Z.-N. WU AND KE LI

Figure 37. Anisotropic grids.

Figure 38. Mach contours with isotropic grids (M∞=2).

Figure 39. Mach contours with anisotropic grids (M∞=2).

the anisotropic algorithm has saved only 13% of the cells. This means if the shock lines is
in the 45◦ direction, the advantage of the anisotropic approach is unimportant.

5. CONCLUDING REMARKS AND FURTHER REMARKS

The anisotropic Cartesian grid method initially developed in References [13, 23] for viscous
�ow computation has been successfully extended to inviscid �ow computations with shock
waves. The re�nement near shock waves does not involve new di�culties. Besides, a very
simple and e�cient �nite-di�erence boundary condition has been constructed for solid wall
treatment. This method ensures stability and does not involve special treatment such as cell
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cutting. As we have stated in Section 3.1, only a �nite di�erence boundary condition is
considered and this method does not require cell cutting as would occur in �nite volume
treatment of boundary conditions. Besides, it does not create trouble as regard to conservation.
There are several important issues with regard to stability and accuracy. Notably, we have

found that Cartesian grids involving multiple re�nement interfaces create positive or negative
dissipation which would have some consequence on stability. This issue has been discussed
in a separate paper [28] and the main conclusion, which holds for both uniform timestepping
and matrix time stepping, can be summarized as follows.

Theorem 5.1
For a general semi-discrete three-point di�erence approximation with multiple re�nement
interfaces, if the wave moves in the �ne-to-coarse direction then the dissipation is posi-
tive (stabilizing), and if the wave moves in the coarse-to-�ne direction then the dissipation
is negative (de-stabilizing). Moreover, the amount of dissipation is insensitive to the subgrid
width if the total re�nement degree is �xed.

It is also interesting to know the accuracy on an adaptive Cartesian grid with multiple
re�nement interfaces. This issue will also be discussed in a separate paper and the main
conclusion, which holds for steady state solution, can be summarized as follows.

Theorem 5.2
For a general three-point di�erence approximation with multiple re�nement interfaces, the
steady state solution has a second order accuracy with respect to the coarsest mesh size and
that it has the same accuracy as the conventional smooth re�nement method if the ratio of
the �nest mesh size to the coarsest mesh size is the same.
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